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ABSTRACT

Feature selection is used in machine learning to improve predictions,
decrease computation time, reduce noise, and tune models based
on limited sample data. In this article, we present FeatureExplorer,
a visual analytics system that supports the dynamic evaluation of
regression models and importance of feature subsets through the
interactive selection of features in high-dimensional feature spaces
typical of hyperspectral images. The interactive system allows users
to iteratively refine and diagnose the model by selecting features
based on their domain knowledge, interchangeable (correlated) fea-
tures, feature importance, and the resulting model performance.

1 INTRODUCTION

Machine learning methods are increasingly used to analyze big data.
However, many of these methods are used as black boxes (primarily
because of the way current computational libraries present the mod-
els/results). Therefore, domain users may not understand how the
results are generated, and may not trust the models. These problems
are further complicated by insufficient data samples and the curse of
dimensionality. Feature selection is often adopted to improve these
models by identifying the relevant features that contribute the most
to the prediction results while removing noisy, irrelevant, and less
important features.

In this paper, we present FeatureExplorer, a visual analytics sys-
tem to support interactive feature selection and model evaluation
for remotely-sensed data. To design this system, we collaborated
with remote sensing experts and plant scientists whose goal was to
predict plants’ wet biomass using data recorded in hyperspectral im-
agery. These domain experts needed to identify the predictive ability
and interchangeability of key features derived from hyperspectral
images (and their underlying wavelengths) for biomass prediction.
It was challenging to investigate such high dimensional datasets and
regression models without visual analytics tools, which motivated
the design of FeatureExplorer. It enables experts to trace the re-
gression models back to the key contributing features (hyperspectral
indices), and ultimately the pertinent image wavelengths (among a
large number of bands), along with options for interactive manip-
ulation, feature selection, and model evaluation based on domain
knowledge.

Our system supports integrated visual exploration and selection
of features through the analysis of: (1) linear relationships among
features using a correlation matrix; (2) distribution of any pair of
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two features using a scatterplot enhanced with Kernel Density Es-
timation (KDE) visualizations; (3) feature importance ranking for
non-linear relationships based on a combination of a feature selec-
tion method (Recursive Feature Elimination (RFE)) and a regression
model (Support Vector Regression (SVR)).

We summarize the contributions of this paper as follows:

• An interactive system supporting dynamic feature exploration
and selection based on univariate and multivariate feature anal-
ysis with integrated regression models, reducing the large num-
ber of features to a few key ones that can be used for improved
modeling and future data collection and analysis.

• Experimental results comparing various machine learning
methods for predicting biomass using hyperspectral indices.

• A workflow for identifying key hyperspectral indices and the
original reflectance values used in index calculations.

• A case study of the use of the platform by domain experts for
hyperspectral image analysis to predict plant wet biomass.

2 BACKGROUND

Biomass is an important plant characteristic that helps with crop
monitoring, yield estimation, and indicating plant growing condi-
tions, and is quantified based on the above-ground weight of a plant
before dehydration. In the case of sorghum (the main plant in our
study), wet biomass determines the amount of ethanol product. To
identify superior plant varieties for breeding, biomass can be man-
ually measured at the end of the growing season; however, this
traditional method is time consuming, expensive, and retrospective.
Instead, hyperspectral images collected by Unmanned Aerial Vehi-
cles (UAVs) throughout the season can be used to predict the final
biomass. Remote sensing experts in our team collected high res-
olution hyperspectral images acquired multiple times (from June
to Sept.) over 14 acres of experimental sorghum fields with 830
varieties in the 2017 growing season. The ground truth wet biomass
was measured once at the end of the growing season (Oct. 15th).

A hyperspectral image captures a spectrum that covers wave-
lengths ranging from 400 nm to 1000 nm in 2.2 nm increments for
each pixel (272 bands). The original collected 272 bands are contin-
uous narrow bands, which are highly correlated with neighboring
ones. To reduce the dependency among these bands, we adopted
hyperspectral indices based on domain practice. Specifically, we
utilize the 36 hyperspectral vegetation indices listed in [16]. Each
index is derived from several bands values and based on a unique
plant biophysical meaning. However, some indices have closely-
related calculation formulas. More information about the sensors,
data pre-processing, and feature extraction is available in [9, 18, 27].

3 RELATED WORK

Feature selection methods can be generally divided into four cate-
gories: filter methods, wrapper methods, embedded methods, and
hybrid methods [4]. The filter and wrapper categories are relevant to
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our work; therefore, we will focus on them here. Pearson’s corre-
lation coefficient is a popular filtering method for narrowing down
features to the ones with high (linear) correlation with the depen-
dent variable. However, correlated but redundant features may be
selected, and the coefficient is unable to characterize nonlinear rela-
tionships. Wrapper methods use regression or classification models
to find an optimal feature subset by iteratively adding or removing
features. The combination of learning models (e.g. SVR) and wrap-
per methods (e.g. RFE) has traditionally been used for automatic
feature selection [6, 8].

Several visualizations have been proposed for feature selection,
including correlation matrices [11], feature clustering [26], feature
ranking [14, 21, 24], scatterplot matrices [10], and dimensionality
reduction [25]. A few visual analytics systems have leveraged a
combination of automatic and visual feature selection techniques.
RegressionExplorer [7] is one such system for inspecting logistic
regression models. Other systems have been proposed to support ex-
ploring linear relationships among features [2,13,22]. BEAMES [5]
is another multi-model system that enables users to interactively
compare different types of models with various hyper-parameters
(e.g., logistic regression vs. Bayesian regression models), while
allowing users to interactively weigh data instances and features. IN-
FUSE [15] enables the ensemble of multiple feature selection meth-
ods by visualizing features importance as determined by various
feature selection methods in a radial glyph. Our focus, however, is
to support domain experts in efficiently reducing a high-dimensional
feature space into key feature subsets, and tracing back the features
to the underlying wavelengths for incorporating domain knowledge.

Partition-based visual analytics systems [19, 20] primarily focus
on the interactive exploration of local structures and relationships of
independent and target variables, appropriate for lower feature space
dimensions. They are aimed at closer inspection of limited numbers
of selected features for optimal distribution partitioning and model
building. However, our focus is on high dimensions (of both data
instances and feature space). Our system’s integrated hierarchical
clustering and matrix visualizations facilitate the quick identification
of (a) influential feature subsets (either already selected or missing)
for model building, (b) the interchangeable features within those
subsets, and (c) detailed feature distribution and importance.

4 DESIGN GOALS

We collaborated with three remote sensing experts: two Ph.D. stu-
dents and a senior faculty member with expertise in hyperspectral
image analysis for agronomy. Traditionally, they predict biomass
using automated feature selection algorithms and regression models.
Oftentimes, optimally tuning these algorithms requires large num-
bers of data samples, which are expensive to collect. It is challenging
to build a model that performs well for all kinds of hybrid varieties,
plants in different locations, or at different growing stages/conditions
with limited samples. Therefore, the domain experts needed to iden-
tify the key hyperspectral features to achieve stable, credible, and
accurate prediction results, using both automated methods and their
domain knowledge to inspect the relationship among features, the
importance of features, and trace the hyperspectral indices back to
the biophysical space. Hyperspectral indices indicate meaningful
chemical concentrations in plants, which can be applied to differ-
entiate plant varieties. The domain experts also expressed the need
for clustering features, dynamic feature selection, and model perfor-
mance comparisons with and without feature selection. We derived
the following design goals to fulfill these requirements:

DG1 Interactive exploration of features, including feature density
distributions and relationships among multivariate features.

DG2 Identification of important features such as influential hyper-
spectral indices and the underlying wavelengths that contribute
to the prediction of wet biomass.

DG3 Direct manipulation and refinement on subset of features
through interactively adding and removing specific features.

DG4 Evaluation of regression results with ground truth for subset of
selected features versus full set of feature.

These requirements were formalized into design mock-ups using
visualizations already familiar to domain users based on their request.
We then implemented the design, and made minor modifications
according to feedback from domain experts, as described below.
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Figure 1: The components diagram of FeatureExplorer.

5 FEATUREEXPLORER

In this section, we first explain how our system addresses the design
goals, and then elaborate on the frontend user interface and backend
analytics components of FeatureExplorer.

5.1 Workflow
Figure 1 presents the system components in FeatureExplorer, and
our process. As shown in Figure 1, FeatureExplorer supports the
analysis of both linear and non-linear relationships (DG1, DG2).
To visualize feature relationships, a correlation matrix serves as an
overview to render the Pearson’s correlation coefficient for all pairs
of features. Users can click on any cell for a detailed inspection of
any particular pair of features. For non-linear relationship analysis,
Support Vector Regression and Recursive Feature Elimination (SVR
+ RFE) provide feature importance ranking. Users can compare and
analyze the ranking results and use the synthesized information to
add or remove features (DG3). R2 and Root Mean Square Error
(RMSE) are calculated to show the regression models’ performance
with the selected subset of features (DG4). After initial implementa-
tion, users requested the capability to adjust the number of folds in
cross validation, to compare the performance of regression models
with a selected subset of features versus with all features, and to map
hyperspectral indices to original wavelengths. This way, users can
utilize the gained insights from the interactive exploration process to
identify the underlying pertinent wavelengths, and strategize ways
to collect only pertinent data in the future to save cost and time.

5.2 User Interface
Figure 2 illustrates the user interface that contains three panels: (A)
a control panel, (B) a correlation panel, and (C) an evaluation panel.
As we described in the previous section, the two latter panels are
separated based on the linearity of the relationship between input
features and predicted variables. In this section, we describe the
views individually, and will showcase the integrated use of these
views in a use case in Section 6.

In the correlation panel, a correlation matrix shows the Pearson’s
correlation coefficient between any pair of features. The coefficient
value is double-encoded using two visual channels (color and radius)
for better usability. Hierarchical clustering groups the features based
on the similarity of correlations to other features. This helps users
identify representative pairs from each cluster while minimizing the
chances of including other similarly correlated pairs. While pro-
viding a good overview, a single correlation value does not provide
sufficient information for interpreting the relationship between two
features. To address this, users can click on any cell to see the scat-
terplot of the selected two features. The system uses both histograms



Figure 2: FeatureExplorer overview: (A) the control panel with a list of unselected features, a list of selected features, a regression button, an
automatic feature selection button; (B) feature correlation panel with a correlation matrix and a scatterplot; (C) evaluation panel with a scatterplot
of ground truth and predicted values, a horizontal bar chart showing the importance score of each feature, a histogram showing the frequency of
used pertinent wavelengths, a table displaying the results with and without feature selection.

and KDE to illustrate the marginal distribution of univariate features
at the edge of the histogram. We also overlaid a 2D KDE on the
scatterplot to better visualize the distribution of two features. The
marginal distributions and KDE contours are beneficial in under-
standing general data patterns. The domain users pointed out that
exploring the hyperspectral index vs. wet biomass scatterplot could
help them investigate whether the index captures the variation across
high and low biomass values.

At the top part of the evaluation panel, a scatterplot shows ground
truth values against predicted results along with R2 and RMSE
values. With this graph, domain users identified that the regression
model does not perform well on extremely high or low biomass
values. The horizontal bar graphs show the feature importance
score for each input feature (using SVR + RFE), and the light blue
rectangles indicate selected features. The histogram beside the
bar graphs shows the frequency of using pertinent reflectance (raw
data) to derive the indices in the subset of selected features over
the wavelength range of 400 nm to 900 nm. This enables domain
experts to trace back the selected features to the wavelengths that are
utilized to derive the indices. Moreover, a table shows performance
comparison for a subset of selected features versus all features based
on the same data partition (training vs. testing) and regression model.

As we mentioned before, the correlation matrix and the SVR +
RFE bar graphs provide different rankings, the former for linear
relationships and the latter for non-linear models. Users can refer to
both to adjust the subset of selected features. In the control panel,
the leftmost list shows unused features, and the list in the middle
shows the selected ones. Users can drag and drop features between
these two lists and evaluate the results on the fly. To avoid exhaustive
feature searching at the beginning by the users, the system enables
an initial automatic feature selection method based on SVR + RFE.

5.3 Regression Models

After testing several regression models including Ridge, Elastic
Net, Partial Least Squares, SVR, Random Forest, and AdaBoost,
we found that SVR [23] outperforms other models for predicting
biomass from hyperspectral indices for most dates. The results of
R2 for these regression models are listed in Table 1. Since R2 and
RMSE are highly correlated (higher R2 means lower RMSE), we

Date Ridge Elastic
Net

Partial
Least

Square
SVR Random

Forest AdaBoost

06/21 0.20 0.13 0.20 0.20 0.20 0.15
06/27 0.25 0.16 0.25 0.24 0.23 0.18
07/04 0.27 0.17 0.27 0.27 0.26 0.19
07/18 0.51 0.23 0.51 0.53 0.44 0.36
07/30 0.51 0.28 0.52 0.55 0.49 0.45
08/08 0.53 0.34 0.53 0.56 0.50 0.45
08/14 0.53 0.35 0.53 0.54 0.51 0.45
08/23 0.54 0.34 0.54 0.54 0.54 0.50
09/10 0.52 0.32 0.52 0.52 0.52 0.47
09/24 0.51 0.35 0.51 0.52 0.51 0.45

Table 1: Comparison of average R2 for 100 trials among multiple
regression models on 10 datesets.

only report the R2. Based on the results, we decided to integrate
SVR + RFE (for automatic feature selection) into the system.

The system runs k-fold cross validation for model evaluation. For
each training of the SVR model, the system first runs a grid search
with a Radial Basis Function (RBF) [1] kernel to select the best
model hyperparameters that maximize R2, and then performs initial
feature selection on that model [17]. The RFE ranks the features
based on their contributions in the regression model, and the system
transforms these ranks to scores in the range of [0, 1], 0 meaning no
contribution and 1 meaning the most important feature in the model.

We use Equation 1 to compute the ranking score of a feature,
where k is the number of folds, d is the number of dimensions in the
feature space, and r denotes the ranking determined by RFE. The
RFE method outputs the ranking of features in a sequential order
from the most important to least; the most important feature has a
ranking of 1 and the least important feature has a ranking of d. The
numerator of Equation 1 sums the normalized ranking (mapping
values in [1, d] to [0, 1]), which is then divided by k to calculate the
average of these scores for multiple runs (in cross-fold validation).
We use this RankingScore in feature importance visualization (the
horizontal bar graphs).

RankingScore =
∑

k
i=1

(d+1−ri)−1
d−1

k
(1)
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Figure 3: Case study in using FeatureExplorer for two hyperspectral datasets.

6 CASE STUDY

A remote sensing expert in our team used FeatureExplorer to inves-
tigate hyperspectral indices for biomass prediction. He aimed to
determine which indices were the most predictive ones, and if he
could reduce a combination of 36 features down to 10 key features
while understanding their biophysical meanings in collaboration
with a plant scientist. He used 10 hyperspectral images collected
from June 21st to Sept. 24th in 2017 to investigate whether the
important subset of hyperspectral indices changed in each image
set. First, he started with one dataset (July 18th) and applied auto-
matic feature selection for 20 features (out of 36 total), and found
that performance using 20 features was slightly better than when
using all 36 features. Then, he applied automatic feature selection,
limiting to 3 features. The regression performance (R2) dropped
significantly (higher RMSE). Based on ranked feature sets and the
correlation matrix, he added 4 features that had high importance
scores and low correlation among them. These 4 features were
selected from different clusters in the correlation matrix, since he
wanted the regression model to learn useful information from diverse
features. The performance of the model improved. After adding up
to 10 features, the performance of the regression model was almost
equivalent to its performance when using 20 features (Figure 3(1)).
He then tested whether applying automatic selection limited to 10
features would lead to similar results; it turned out that the manually
selected features outperformed the automatic selection (Figure 3(2)).

Next, he applied the same subset of features on another hyper-
spectral image (July 30th) that was captured 12 days after the first
one. He found that wet biomass had stronger correlations with most
hyperspectral indices (the correlation matrix shown in Figure 3(5))
compared with the first dataset (the correlation matrix shown in
Figure 2(B)). The regression model performed better on the second
dataset than the first one because the plants were at a different grow-
ing stage [12] and their reflectance had changed [3]. Tuning the
regression model on the second dataset with the 10 features selected
during analyzing the first dataset did not improve the prediction re-
sults; however, the performance of the regression model did not drop
dramatically (Figure 3(3)). By carefully examining the correlation
matrix for the second dataset, he found 3 features that did not have
high correlations with biomass. After removing these 3 features
and adding another feature which had a high importance score and

high correlation with biomass, the model’s performance improved
significantly (Figure 3(4)). This indicates the human-in-the-loop can
improve the predictive performance of the regression model.

7 CONCLUSION AND FUTURE WORK

We presented a visual analytics system for the exploration, ranking,
and selection of features in integrated regression models supporting
analysis on linear and non-linear relationships. The system provides
initial automated feature selection, and enables users to dynami-
cally change, compare and evaluate models’ performance based on
user-specified subsets of features. We demonstrated the successful
use of the system by remote sensing experts to identify important
hyperspectral indices at various plant growth stages for predicting
the biomass at the end of the growing season, as well as tracing these
indices back to the underlying wavelengths for each growing stage.
This enables more targeted data collection and analysis in the future.
FeatureExplorer can also be applied to other sensor data (e.g., mul-
tispectral, LiDAR) that possess similar properties to hyperspectral
indices (e.g. high dimensions, derived correlated features), to predict
variables other than biomass. Our system also can be adjusted to
include different regression models since the underlying model will
not intrinsically impact the feature exploration workflow.

Future visual analytics research should investigate the dynamic
generation of features based on raw input data, e.g. customized fea-
tures based on different formulations of hyperspectral indices. Also,
one can improve the feature selection workflow by visually high-
lighting potential features in clusters that are ranked high importance
(or low), for faster subgroup inclusion/exclusion. Feature selection
in regression models for spatially and temporally heterogeneous
data is also an open area for research. Specifically, the geovisu-
alization of feature importance for spatial regression methods has
not been adequately addressed. Finally, time series analysis can
be incorporated to model temporally variable feature contributions,
e.g. in a sequence of hyperspectral images with temporally variable
wavelength reflectances at different plant growing stages.
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